Numerical approaches for dipole modeling in finite element method based source analysis

نویسندگان

  • C. H. Wolters
  • H. Köstler
  • C. Möller
  • J. Härdtlein
  • A. Anwander
چکیده

In EEG/MEG source analysis, a mathematical dipole is widely used as the “atomic” structure of the primary current distribution. When using realistic finite element models for the forward problem, the current dipole introduces a singularity on the right-hand side of the governing differential equation that has to be treated specifically. We evaluated and compared three different numerical approaches, a subtraction method, a direct approach using partial integration and a direct approach using the principle of Saint Venant. Evaluation and comparison were carried out in a fourlayer sphere model using quasi-analytical formulas. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method

One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...

متن کامل

Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis.

Accuracy and run-time play an important role in medical diagnostics and research as well as in the field of neuroscience. In Electroencephalography (EEG) source reconstruction, a current distribution in the human brain is reconstructed noninvasively from measured potentials at the head surface (the EEG inverse problem). Numerical modeling techniques are used to simulate head surface potentials ...

متن کامل

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

متن کامل

Modeling of the dielectrophoretic forces acting upon biological cells: A numerical comparison between Finite Element/Boundary Element Maxwell stress tensor methods and point–dipole approach

Maxwell Stress Tensor (MST) method is investigated in this study to quantify the degree of approximation made with the point–dipole method in respect to dielectrophoresis (DEP) in micro–devices. Latex particles and biological cells immersed in aqueous buffers of various conductivities are considered. The two methods (point–dipole and MST full approaches) are compared using analytical dipolar so...

متن کامل

Numerical analysis of slide-head-toppling failure

In layered and blocky rock slopes, toppling failure is a common mode of instability that may occur in mining engineering. If this type of slope failure occurs as a consequence of another type of failure, it is referred to as the secondary toppling failure. “Slide-head-toppling” is a type of secondary toppling failures, where the upper part of the slope is toppled as a consequence of a semi-circ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007